Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties.

نویسندگان

  • Parisa Farzam
  • Turgut Durduran
چکیده

Traditionally, diffuse correlation spectroscopy (DCS) measures microvascular blood flow by fitting a physical model to the measurement of the intensity autocorrelation function from a single source-detector pair. This analysis relies on the accurate knowledge of the optical properties, absorption, and reduced scattering coefficients of the medium. Therefore, DCS is often deployed together with diffuse optical spectroscopy. We present an algorithm that employs multidistance DCS (MD-DCS) for simultaneous measurement of bloodflow index, as well as an estimate of the optical properties of the tissue. The algorithm has been validated through noise-free and noise-added simulated data and phantom measurements. A longitudinal in vivo measurement ofa mouse tumor is also shown. MD-DCS is introduced as a stand-alone system for small source-detector separations (<2 cm) for noninvasive measurement of microvascular blood flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle.

We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow ind...

متن کامل

Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements

In this study we evaluate the influences of optical property assumptions on near-infrared diffuse correlation spectroscopy (DCS) flow index measurements. The optical properties, absorption coefficient (µ(a)) and reduced scattering coefficient (µ(s)'), are independently varied using liquid phantoms and measured concurrently with the flow index using a hybrid optical system combining a dual-wavel...

متن کامل

Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy.

Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and d...

متن کامل

Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy.

We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from conc...

متن کامل

Noninvasively measuring the hemodynamic effects of massage on skeletal muscle: a novel hybrid near-infrared diffuse optical instrument.

Increase in tissue blood flow is one of the most acknowledged potential effects of massage; however, actual research studies examining this phenomenon are inconsistent and inconclusive. One possible reason for continued uncertainty regarding this topic is methodology, specifically how tissue blood flow is measured because limitations exist in previously utilized technologies. Near-infrared spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2015